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Semiphenomenological theory of the Tolman length
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A semiphenomenological cluster theory of the curvature corre@ioto the surface tension of a spherical
liquid drop (known as a “Tolman length) is presented. By using the Fisher droplet model of condensation
[M. E. Fisher, Physic8, 255(1967]. we obtain an equation relating to the saturation vapor pressure at a
given temperatur@. For low temperatures an analytical solution is obtained. In a general case the equation is
solved numerically for various nonpolar substances. Not too clo3g t&; is found to be positive and of the
order of 0.2r, whereo is a molecular diameter, in agreement with molecular dynamics simulations. As
T—T. the Tolman length becomes negative and diverges, as predicted by the density functional analysis.
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PACS numbg(s): 68.10.Cr, 64.60.Fr, 51.30i

[. INTRODUCTION Recently interest in this problem has been stimulated by
the development of semiphenomenological theories of ho-

In 1949 Tolmar(1], on the basis of the Gibbs thermody- mogeneous nucleation3-5], where the concept of
namic description of capillarity, predicted that the surfacecurvature-dependent surface tension of newly born nuclei
tension of a spherical liquid droplet, defined at the positionPlays an important role. As it is known, the rate of homoge-

R, of a “surface of tension,” has a form neous nucleation defined as a number of critical nuclei
formed per unit volume per unit time is proportional to the
3 207 Boltzmann factor~e~2¢"/keT, where AG* is the Gibbs
YIRs]= 70| 1~ R/ @D free energy required to form a critical nucleus. In its simplest

form, given by the classical nucleation theotyG* ~ v>.

where y, denotes the surface tension of the planar liquid-Thus J~e”’. Critical nuclei are usually very small objects:
vapor interface Rs—), and oy is the so called “Tolman  their size is of the order of 1—10 nm. Therefore even a small
length.” The surface of tension makes the Laplace law exacgorrection to surface tension can have a dramatic effeet

[2] (thus one can say that the surface tension acts on th@ers of magnitudeon the nucleation rate.

surface of tension Unfortunately there are no reliable experimental data on
the Tolman length. However, during the last decade several

I_ UZZy[RS]. 2) analytical and simulation results were obtained. Fisher and

Rs Wortis [6], on the basis of density functional considerations,

| v . o showed that when the two coexisting phases are symmetric,
Herep' andp® are the pressures in the bulk liquid within the 5 \anishes exactly at all temperatures. The same result was
droplet and the vapor outside it. One can define another di()btained by Blokhuis and Bedealig] on the basis of the
viding surface, called an “equimolar surface,”.characterized|rwing_KirkWOOd expression for the pressure tensor in an
by the zeroth adsorption. R, denotes its radius, then by jnnomogeneous fluid. In the presenceasfmmetrywhich is

definition always the case for real fluigthis conclusion does not hold.
Re " Nijmeijer et al. [8] performed molecular dynamicéMD)
f dRr Fg[p(R)—pl]-i-f dR R[p(R)—p’]=0, simulations of liquid droplets with molecules interacting via
0 Re the Lennard-Jones potential. Simulations made for one par-

_ ) i | ticular temperature T/T.~0.83 gave the estimate
wvherep(R) is the number density at radif, andp' and | 51 -0 75 where o is the hard-core molecular diameter.
p’ are densities in the bulk liquid and vapor, respectively.jave and Bruin[9] recently evaluated the temperature de-
The Tolman length in Eqtl) is defined as a planar limit of hengence of the Tolman length for a Lennard-Jones fluid
the separation between these two surfaces, from MD simulations of aplanar interface using the rela-

o Do tions proposed in7]. Their data, characterized by much

5T‘Ref'R2Lw(Re Ro)=2e=2 © higher accuracy than the estimate[8f (though not in con-
flict with the lattey, show that within the range
(the z axis is perpendicular to the interface with positwe 0.69<T/T.<0.92, 87 is positive and small. However, at
directed away from the center of curvaturé is clear that high temperaturesl/T.=0.87, simulation results exhibited
both dividing surfaces are situated in the interfacial zondarge fluctuations.
with a width of the order of the correlation length. Therefore, Fisher and Wortis studied the critical behavior&f, and
far from the critical point the Tolman length is expected tofound that within the Landau theory;(T) approaches a
be of molecular size. However, the temperature dependenanstant valugof the order of molecular sizeas T— T,
and even the sign of; remains a matter of controversy.  and its sign is determined solely by the coefficient of the
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fifth-order term in the free energy expansion. Furthermorecal region, Fisher found that the parametdras a universal
within van der Waals theory this limiting value is negative. nature, and can be expressed in terms of the critical exponent
Near the critical point fluctuations become extremely impor-é describing the shape of the critical isotherdw(4.81[2])
tant, and one has to go beyond the Landau theory. The scal-
ing hypothesis and renormalization group analy8ipredict
the divergence ofst at T, (for asymmetric phase transi-
tiong). In this paper, we present a semiphenomenological
cluster theory of the Tolman length based on the Fisher clusKiang [12] showed(see alsq5]) that 7 can be related to the
ter model of condensation and discuss its behavior in a wideritical state parameters
temperature range.

Pc ()

IIl. MODEL pcksTe {(7—1)°

—2+1 2.2
T= EN..

C)

Our starting point is Fisher’s cluster model of condensawhere {(u)==_,n"" is the Riemann zeta function, and
tion [10]. Let us consider a real gas and, following Fisher,p. and p., are the critical pressure and the critical number
assume that it can be regarded as a collection of noninteracgensity, respectively. The values efobtained from Eq(9)

ing spherical clustergintracluster interactions are impor- for various substances are close to Fisher’s original universal
tany. Clusters of different sizes are in mutual statistical equi-nyumber. The other parametey is related tor by

librium, associating and dissociating. An cluster can be

viewed as a microscopic liquid droplet containingmol- Jo=pc/L(7—1). (10
ecules in the surrounding vapor. The grand partition function ) . ] ) ) )
of the gas can then be written in an exponential form, The microscopic surface tension remains undetermined in

Fisher's model. We will associatg,.,, with the surface

tension of a spherical surface of arcluster with the radius
, @ r,=rn'

whereq, is the configuration integral for the-cluster in a
domain of volumeV [11], z=ef#/A% is the fugacity,
B=1/kgT, n the chemical potential, and the de Broglie
wavelength of a molecule. As a result the pressure equati
of state,pV=kgTInZE, which we apply at the coexistence
(saturation line, reads

25T) an

Ymicro(N) = 70( 1- A
n
O‘,l;his Tolman-like ansatz is consistent with a conceptual view
on the cluster as being a microscopic liquid droplet. It proved
to be quite successful in quantitative predictions of the nucle-
ation behavior of complex substan¢&$ From Eqs(5)—(7),

Peat g we find
= Pn,sat: 5
kBT n=1 Pn,sat— QOeXF[_IB')’microSanB_ Tlnn]- (12
where Combining ansatzl1) with Egs.(5) and(12), we obtain
. 1 n p *
Pn,sat_vqnzsat (6) sat _ 2 n~7exd — 00(1+a7n_1/3)n2/3], (13)
doksT A=1
is the number density oh-clusters at coexistence and h
Paf T) andze,(T) are coexistence values of the pressure and/"€r€
fugacity. The configuration integral has the fof@0] oS
0~1
qnquVAsnqu_nBMsat_Bymicroslnzg_ rInn]. (7) 0 kgT 14

The terms in the argument of the exponential refer to thds a dimensionless macroscopic surface tension. For conve-
bulk energy, surface energy and entropic contributions, renience we have introduced an unknown, related tody as
spectively; us(T) is the chemical potential at coexistence,

s:n??is the surface area of amcluster,s;=4r2, and L= 20r (15
3 1713 7 M1
S ol (8) Equation(13) is the central point of the proposed theory. It

relates a Tolman length to the known macroscopic quantities.
wherep'(T) is the liquid number density at coexistence. The The saturation pressure and liquid density are empirically
important feature of Eq(7) is that the surface energy of the well defined and tabulated for various substances for a wide
n cluster contains a “microscopic surface tensioWmico  temperature range up t6. [13]. There also exist several
which is not identical to its macroscopic counterpggt The  empirical correlations for the macroscopic surface tension
term with Im takes into account contributions from various based on the law of corresponding states. Empirical correla-
degrees of freedom of a cluster, and from configurationations for ps, p', and y, are discussed in the Appendix.
effects. Pursuing the consequences of the model in the critEquation(13) is highly nonlinear, its right-hand side
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R=Y n "exg—fp(1+a,n n? (16 }, angonoa. (7
n=1 ‘/ %

05| .
is a positively termed series containing the unknown quantity o nonane "
@, in the argument of the exponential function. For edch &
we are searching for the root in the intervall< o, <o 1 ,
(a,=—1 implies that the microsopic surface tension for all w 0 :/

benzene argon

o MD (Haye et al.[9])
— nonane

-- argon

- = benzene

clusters is positive The derivative §R/da,)t is negative
for all temperatures, which means this a monotonically
decreasing function of,, yielding the uniqueness of the

root of Eq.(13). 055 o1 oo 03
For low temperatures the surface tension is large T It = I(T-T.)T,|

(#p>1), and the Tolman length is expected to be small T ere

(la,/<1). With a high degree of accuracy we can in this °

case truncate the seriesrat 1, which results in the analyti-

FIG. 1. Temperature dependence of the Tolman length.

cal solution 8% =67lo, o is a hard-core molecular diameters (T—T¢)/ T, is
1 the reduced temperature. Lines, theoretical predictisnkition of

a,=— _|n[ﬂ -1, |ay|<1 (17) Eq. (13)] for argon, benzene, and nonane. Squares, MD results of
0o |[dokeT Haye and Bruin[9]. The MD estimate of Nijmeijerwt al. [8] is

] . | 5% (]t|=0.17)<0.7. Also shown is the approximate analytical so-
For high temperatures the surface tension becomes smaljytion (17) for argon, which is sitable in a low-temperature region
and truncation of(16) at the first term is impossible. In a ,t fails at high absolute temperatureee the text
general case Eq13) has to be solved by iteration. The fast
(exponentigl convergence of16) at each iteration stepis ~ Wortis. For this reason the numerical procedure fails near
provided by the terms with large absolute values of the arT.. According to the thermodynamic definitid8), a nega-
gument of the exponential. Therefore we can truncate théive Tolman length means that the surface of tension is situ-

series an=N®, satisfying ated on the gas side of the equimolar surface. Our results
(0273 (0NN 113 suggest that af >T, the microscopic surface tension in-
Oo(N™) =+ Gpar,"(NT) 7°=G, (18 creases with increasing curvature, the effect being larger the

) . i larger the temperature. This trend is opposite to the usually
where a’” is the value ofa, at thekth iteration step, and  gjscussed one taking place far frofp. Note that a possibil-
G>1is alarge numbe(in our numerical procedure we have ity of negatives; for the model system of penetrable spheres
chosenG=100). For each iteration step the truncation limit was pointed out by Hemingway, Henderson, and Rowlinson

is given by [14]. Figure 1 also shows the analytical soluti¢h7) for
1 1713 argon. Forlt|>0.3 it appears to be a good approximation to
NO(Gy:a®)=2| - a®+| (a)24+— (19  the “exact” numerical solution but closer to the critical re-
78 7 ’ bo gion it is essentially in error.

] ] Note finally that it would be desirable to derive a critical
Figure 1 shows the behavior of the reduced Tolman 'engthexponent for the Tolman length on the basis of the proposed
semiphenomenological theory, and compare it with the den-
St = ﬁ __%n sity functional analysis of Fisher and Worf]. However, at
o 2 o the present stage this does not seem to be plausible. The
reason is that the Fisher droplet mofiH)] yielding Eq.(13)
for three nonpolar substances—argon, benzene, angnores cluster-cluster interaction@xcluded volume ef-
n-nonane—as a function of the reduced temperature fects, which become important in the critical region. There-
T_T fore in this region our theory is suggestive, but it cannot be
= c (200  taken literally for a calculation of a critical exponent. Taking
Te into account intercluster interactions could be a direction for
future development of the theory.

t

The values of the molecular diameterare given in Table |.
Comparison of theoretical predictions with MD simula-
tions of[8] and[9] shows a good agreement in a temperature
domain where reliable simulations were performed—except We have formulated a semiphenomenological cluster
for one point all theoretical curves lie within the error bars oftheory of the Tolman length based on the Fisher cluster
MD simulations. Not too close td., the Tolman length for model of condensation combined with a Tolman-like ansatz
all substances is positive, and is aboutd.For small|t| for the microscopic surface tension of a cluster. Calculations
(It}=2x10"?) it changes sign at a certain temperatliie  performed for several nonpolar substances show that not too
and becomes negative. At; the surface tension of a droplet close to T, the Tolman length is positive and is about
is equal to that of the flat surface. Finally, there is an indi-0.20; theoretical predictions are in good agreement with
cation thatd; diverges when the critical point is approachedavailable MD simulation data. Nedr,, 6t changes sign and
as predicted by the density functional analysis of Fisher andiverges.

Ill. CONCLUSIONS
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TABLE I. Thermophysical properties of argon, benzene, and nofBBle p., critical pressure in bar;
T., critical temperature in Kp,, critical number density in mol/cf T,, normal boiling point in K,o,
molecular diameter in Aa, b, ¢, andd are parameters of the saturation vapor preséis.

Pe T pt Ty o a b c d

argon 48.7 1508 749 87.3 3.542-590501 1.12627 —0.76787 —1.62721
benzene 48.9 562.2 259 353.2 5349-6.98273 1.33213 —2.62863 —3.33399
nonane 229 5946 548 424 6.567—8.24480 157885 —4.38155 —4.04412
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APPENDIX: EMPIRICAL CORRELATIONS

whereM is a molar mass ani, the Avogadro number.
FOR MACROSCOPIC PROPERTIES

The widely used correlation for the macroscopic surface
In this appendix we present empirical correlations fort€nsion,yo, of nonpolar fluids readgl3]
Psan P, andy, for argon, benzene, and nonane used in cal-

culations of the Tolman length from E¢L3). The saturation yo(t)=A,|t]128, (A2)
vapor pressurg,; for all of these substances has the form
[13] A, =pZoTiRQ,
Psat (A3)
In—==(1-[t])"*[alt|+b[t|">+c[t[>+d|t]*], (A1) Ty, IN(pc/1.01325
Pc Q=0.119%1+ -7, —0.279.
r

with the values of parametess b, ¢, andd given in Table I.

The liquid mass densities;, (g/cm®) of the compounds Here A, is in dyn/cm,psy andp, are in barsT,, =T, /Te,
read as follows. Argon [15]: pl =1.373961—4.65 Ty is a normal boiling point in K. Values of ., Ty, and
X107 3(tcest 183.15)].  Benzene [15]: p! =0.90005 p. are given in Table I.
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