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Semiphenomenological theory of the Tolman length
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Physics Department, Eindhoven University of Technology, W&S, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
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A semiphenomenological cluster theory of the curvature correctiondT to the surface tension of a spherical
liquid drop ~known as a ‘‘Tolman length’’! is presented. By using the Fisher droplet model of condensation
@M. E. Fisher, Physics3, 255 ~1967!#. we obtain an equation relatingdT to the saturation vapor pressure at a
given temperatureT. For low temperatures an analytical solution is obtained. In a general case the equation is
solved numerically for various nonpolar substances. Not too close toTc , dT is found to be positive and of the
order of 0.2s, wheres is a molecular diameter, in agreement with molecular dynamics simulations. As
T→Tc

2 the Tolman length becomes negative and diverges, as predicted by the density functional analysis.
@S1063-651X~97!12502-8#

PACS number~s!: 68.10.Cr, 64.60.Fr, 51.30.1i
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I. INTRODUCTION

In 1949 Tolman@1#, on the basis of the Gibbs thermod
namic description of capillarity, predicted that the surfa
tension of a spherical liquid droplet, defined at the posit
Rs of a ‘‘surface of tension,’’ has a form

g@Rs#5g0S 12
2dT
Rs

D , ~1!

whereg0 denotes the surface tension of the planar liqu
vapor interface (Rs→`), anddT is the so called ‘‘Tolman
length.’’ The surface of tension makes the Laplace law ex
@2# ~thus one can say that the surface tension acts on
surface of tension!:

pl2pv5
2g@Rs#

Rs
. ~2!

Herepl andpv are the pressures in the bulk liquid within th
droplet and the vapor outside it. One can define another
viding surface, called an ‘‘equimolar surface,’’ characteriz
by the zeroth adsorption. IfRe denotes its radius, then b
definition

E
0

Re
dR R2@r~R!2r l #1E

Re

`

dR R2@r~R!2rv#50,

wherer(R) is the number density at radiusR, andr l and
rv are densities in the bulk liquid and vapor, respective
The Tolman length in Eq.~1! is defined as a planar limit o
the separation between these two surfaces,

dT5 lim
Re ,Rs→`

~Re2Rs!5ze2zs ~3!

~the z axis is perpendicular to the interface with positivez
directed away from the center of curvature!. It is clear that
both dividing surfaces are situated in the interfacial zo
with a width of the order of the correlation length. Therefo
far from the critical point the Tolman length is expected
be of molecular size. However, the temperature depende
and even the sign ofdT remains a matter of controversy.
551063-651X/97/55~3!/3068~4!/$10.00
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Recently interest in this problem has been stimulated
the development of semiphenomenological theories of
mogeneous nucleation@3–5#, where the concept o
curvature-dependent surface tension of newly born nu
plays an important role. As it is known, the rate of homog
neous nucleationJ defined as a number of critical nucle
formed per unit volume per unit time is proportional to th
Boltzmann factorJ;e2DG* /kBT, whereDG* is the Gibbs
free energy required to form a critical nucleus. In its simpl
form, given by the classical nucleation theory,DG*;g3.
Thus J;eg3. Critical nuclei are usually very small objects
their size is of the order of 1–10 nm. Therefore even a sm
correction to surface tension can have a dramatic effect~or-
ders of magnitude! on the nucleation rate.

Unfortunately there are no reliable experimental data
the Tolman length. However, during the last decade sev
analytical and simulation results were obtained. Fisher
Wortis @6#, on the basis of density functional consideration
showed that when the two coexisting phases are symme
dT vanishes exactly at all temperatures. The same result
obtained by Blokhuis and Bedeaux@7# on the basis of the
Irwing-Kirkwood expression for the pressure tensor in
inhomogeneous fluid. In the presence ofasymmetry~which is
always the case for real fluids! this conclusion does not hold
Nijmeijer et al. @8# performed molecular dynamics~MD!
simulations of liquid droplets with molecules interacting v
the Lennard-Jones potential. Simulations made for one
ticular temperature T/Tc'0.83 gave the estimate
udTu,0.7s, wheres is the hard-core molecular diamete
Haye and Bruin@9# recently evaluated the temperature d
pendence of the Tolman length for a Lennard-Jones fl
from MD simulations of aplanar interface using the rela
tions proposed in@7#. Their data, characterized by muc
higher accuracy than the estimate of@8# ~though not in con-
flict with the latter!, show that within the range
0.69<T/Tc<0.92, dT is positive and small. However, a
high temperatures,T/Tc>0.87, simulation results exhibite
large fluctuations.

Fisher and Wortis studied the critical behavior ofdT , and
found that within the Landau theorydT(T) approaches a
constant value~of the order of molecular size! as T→Tc

2

and its sign is determined solely by the coefficient of t
3068 © 1997 The American Physical Society
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55 3069SEMIPHENOMENOLOGICAL THEORY OF THE TOLMAN LENGTH
fifth-order term in the free energy expansion. Furthermo
within van der Waals theory this limiting value is negativ
Near the critical point fluctuations become extremely imp
tant, and one has to go beyond the Landau theory. The s
ing hypothesis and renormalization group analysis@6# predict
the divergence ofdT at Tc ~for asymmetric phase trans
tions!. In this paper, we present a semiphenomenolog
cluster theory of the Tolman length based on the Fisher c
ter model of condensation and discuss its behavior in a w
temperature range.

II. MODEL

Our starting point is Fisher’s cluster model of conden
tion @10#. Let us consider a real gas and, following Fish
assume that it can be regarded as a collection of noninte
ing spherical clusters~intracluster interactions are impo
tant!. Clusters of different sizes are in mutual statistical eq
librium, associating and dissociating. Ann cluster can be
viewed as a microscopic liquid droplet containingn mol-
ecules in the surrounding vapor. The grand partition funct
of the gas can then be written in an exponential form,

J5expF (
n51

`

qnz
nG , ~4!

whereqn is the configuration integral for then-cluster in a
domain of volumeV @11#, z[ebm/L3 is the fugacity,
b51/kBT, m the chemical potential, andL the de Broglie
wavelength of a molecule. As a result the pressure equa
of state,pV5kBTlnJ, which we apply at the coexistenc
~saturation! line, reads

psat
kBT

5 (
n51

`

rn,sat, ~5!

where

rn,sat5
1

V
qnzsat

n ~6!

is the number density ofn-clusters at coexistence an
psat(T) andzsat(T) are coexistence values of the pressure a
fugacity. The configuration integral has the form@10#

qn5q0VL3nexp@2nbmsat2bgmicros1n
2/32t lnn#. ~7!

The terms in the argument of the exponential refer to
bulk energy, surface energy and entropic contributions,
spectively;msat(T) is the chemical potential at coexistenc
s1n

2/3 is the surface area of ann cluster,s154pr 1
2, and

r 15F 34p

1

r l G
1/3

, ~8!

wherer l(T) is the liquid number density at coexistence. T
important feature of Eq.~7! is that the surface energy of th
n cluster contains a ‘‘microscopic surface tension’’gmicro
which is not identical to its macroscopic counterpartg0. The
term with lnn takes into account contributions from variou
degrees of freedom of a cluster, and from configuratio
effects. Pursuing the consequences of the model in the c
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cal region, Fisher found that the parametert has a universal
nature, and can be expressed in terms of the critical expo
d describing the shape of the critical isotherm (d'4.81 @2#!

t521
1

d
'2.2.

Kiang @12# showed~see also@5#! that t can be related to the
critical state parameters

pc
rckBTc

5
z~t!

z~t21!
, ~9!

where z(u)5(n51
` n2u is the Riemann zeta function, an

pc and rc are the critical pressure and the critical numb
density, respectively. The values oft obtained from Eq.~9!
for various substances are close to Fisher’s original unive
number. The other parameterq0 is related tot by

q05rc /z~t21!. ~10!

The microscopic surface tension remains undetermined
Fisher’s model. We will associategmicro with the surface
tension of a spherical surface of ann cluster with the radius
r n5r 1n

1/3:

gmicro~n!5g0S 12
2dT
r n

D . ~11!

This Tolman-like ansatz is consistent with a conceptual vi
on the cluster as being a microscopic liquid droplet. It prov
to be quite successful in quantitative predictions of the nuc
ation behavior of complex substances@5#. From Eqs.~5!–~7!,
we find

rn,sat5q0exp@2bgmicros1n
2/32t lnn#. ~12!

Combining ansatz~11! with Eqs.~5! and ~12!, we obtain

psat
q0kBT

5 (
n51

`

n2texp@2u0~11agn
21/3!n2/3#, ~13!

where

u0[
g0s1
kBT

~14!

is a dimensionless macroscopic surface tension. For co
nience we have introduced an unknownag , related todT as

ag[2
2dT
r 1

. ~15!

Equation~13! is the central point of the proposed theory.
relates a Tolman length to the known macroscopic quantit

The saturation pressure and liquid density are empiric
well defined and tabulated for various substances for a w
temperature range up toTc @13#. There also exist severa
empirical correlations for the macroscopic surface tens
based on the law of corresponding states. Empirical corr
tions for psat, r l , and g0 are discussed in the Appendix
Equation~13! is highly nonlinear, its right-hand side
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R[ (
n51

`

n2texp@2u0~11agn
21/3!n2/3# ~16!

is a positively termed series containing the unknown quan
ag in the argument of the exponential function. For eachT
we are searching for the root in the interval21<ag,`
(ag>21 implies that the microsopic surface tension for
clusters is positive!. The derivative (]R/]ag)T is negative
for all temperatures, which means thatR is a monotonically
decreasing function ofag , yielding the uniqueness of th
root of Eq.~13!.

For low temperatures the surface tension is lar
(u0.1), and the Tolman length is expected to be sm
(uagu!1). With a high degree of accuracy we can in th
case truncate the series atn51, which results in the analyti
cal solution

ag52
1

u0
lnF psat

q0kBT
G21, uagu!1 ~17!

For high temperatures the surface tension becomes sm
and truncation of~16! at the first term is impossible. In
general case Eq.~13! has to be solved by iteration. The fa
~exponential! convergence of~16! at each iteration stepk is
provided by the terms with large absolute values of the
gument of the exponential. Therefore we can truncate
series atn5N(k), satisfying

u0~N
~k!!2/31u0ag

~k!~N~k!!1/35G, ~18!

whereag
(k) is the value ofag at thekth iteration step, and

G@1 is a large number~in our numerical procedure we hav
chosenG5100). For each iteration step the truncation lim
is given by

N~k!~u0 ;ag
~k!!5

1

8 F2ag
~k!1S ~ag

~k!!21
4G

u0
D 1/2G3. ~19!

Figure 1 shows the behavior of the reduced Tolman leng

dT*[
dT
s

52
ag

2

r 1
s

for three nonpolar substances—argon, benzene,
n-nonane—as a function of the reduced temperature

t5
T2Tc
Tc

. ~20!

The values of the molecular diameters are given in Table I.
Comparison of theoretical predictions with MD simul

tions of@8# and@9# shows a good agreement in a temperat
domain where reliable simulations were performed—exc
for one point all theoretical curves lie within the error bars
MD simulations. Not too close toTc, the Tolman length for
all substances is positive, and is about 0.2s. For small utu
(utu&231022) it changes sign at a certain temperatureTd
and becomes negative. AtTd the surface tension of a drople
is equal to that of the flat surface. Finally, there is an in
cation thatdT diverges when the critical point is approach
as predicted by the density functional analysis of Fisher
y
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Wortis. For this reason the numerical procedure fails n
Tc . According to the thermodynamic definition~3!, a nega-
tive Tolman length means that the surface of tension is s
ated on the gas side of the equimolar surface. Our res
suggest that atT.Td the microscopic surface tension in
creases with increasing curvature, the effect being larger
larger the temperature. This trend is opposite to the usu
discussed one taking place far fromTc . Note that a possibil-
ity of negativedT for the model system of penetrable spher
was pointed out by Hemingway, Henderson, and Rowlins
@14#. Figure 1 also shows the analytical solution~17! for
argon. Forutu.0.3 it appears to be a good approximation
the ‘‘exact’’ numerical solution but closer to the critical re
gion it is essentially in error.

Note finally that it would be desirable to derive a critic
exponent for the Tolman length on the basis of the propo
semiphenomenological theory, and compare it with the d
sity functional analysis of Fisher and Wortis@6#. However, at
the present stage this does not seem to be plausible.
reason is that the Fisher droplet model@10# yielding Eq.~13!
ignores cluster-cluster interactions~excluded volume ef-
fects!, which become important in the critical region. Ther
fore in this region our theory is suggestive, but it cannot
taken literally for a calculation of a critical exponent. Takin
into account intercluster interactions could be a direction
future development of the theory.

III. CONCLUSIONS

We have formulated a semiphenomenological clus
theory of the Tolman length based on the Fisher clus
model of condensation combined with a Tolman-like ans
for the microscopic surface tension of a cluster. Calculatio
performed for several nonpolar substances show that not
close to Tc the Tolman length is positive and is abo
0.2s; theoretical predictions are in good agreement w
available MD simulation data. NearTc , dT changes sign and
diverges.

FIG. 1. Temperature dependence of the Tolman leng
dT*5dT /s, s is a hard-core molecular diameter;t5(T2Tc)/Tc is
the reduced temperature. Lines, theoretical predictions@solution of
Eq. ~13!# for argon, benzene, and nonane. Squares, MD result
Haye and Bruin@9#. The MD estimate of Nijmeijeret al. @8# is
udT* (utu50.17)u,0.7. Also shown is the approximate analytical s
lution ~17! for argon, which is suitable in a low-temperature regi
but fails at high absolute temperatures~see the text!.



55 3071SEMIPHENOMENOLOGICAL THEORY OF THE TOLMAN LENGTH
TABLE I. Thermophysical properties of argon, benzene, and nonane@13#. pc , critical pressure in bar;
Tc , critical temperature in K;rc , critical number density in mol/cm3; Tb , normal boiling point in K,s,
molecular diameter in Å,a, b, c, andd are parameters of the saturation vapor pressure~A1!.

pc Tc rc
21 Tb s a b c d

argon 48.7 150.8 74.9 87.3 3.54225.905 01 1.126 27 20.767 87 21.627 21
benzene 48.9 562.2 259 353.2 5.34926.982 73 1.332 13 22.628 63 23.333 99
nonane 22.9 594.6 548 424 6.56728.244 80 1.578 85 24.381 55 24.044 12
I
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APPENDIX: EMPIRICAL CORRELATIONS
FOR MACROSCOPIC PROPERTIES

In this appendix we present empirical correlations
psat, r l , andg0 for argon, benzene, and nonane used in c
culations of the Tolman length from Eq.~13!. The saturation
vapor pressurepsat for all of these substances has the fo
@13#

ln
psat
pc

5~12utu!21@autu1butu1.51cutu31dutu4#, ~A1!

with the values of parametersa, b, c, andd given in Table I.
The liquid mass densitiesrm

l ~g/cm3) of the compounds
read as follows. Argon @15#: rm

l 51.37396@124.65
31023(tCels1183.15)]. Benzene @15#: rm

l 50.90005
s

-

.
d
-
h

r
l-

21.063631023tCels20.037631026tCels
2 22.21331029tCels

3

Nonane @16#: rm
l 50.73350327.8756231024tCels

29.6893731028tCels
2 21.2961631029tCels

3 , tCels is the Cel-
sius temperature. The liquid number density is given by

r l5
rm
l NA

M
,

whereM is a molar mass andNA the Avogadro number.
The widely used correlation for the macroscopic surfa

tension,g0, of nonpolar fluids reads@13#

g0~ t !5Agutu1.26, ~A2!

Ag5pc
2/3Tc

1/3Q,
~A3!

Q50.1196F11
Tbrln~pc/1.01325!

12Tbr
G20.279.

HereAg is in dyn/cm,psat andpc are in bars,Tbr5Tb /Tc ,
Tb is a normal boiling point in K. Values ofTc , Tb , and
pc are given in Table I.
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